!
Y

AD-A258 634
WU

P
.

DTIC

ELECTE
Human-Computer Interaction DEC1 5 1992
in the School of Computer Science c

Edited by
Bonnie E. John, Philip L. Miller, Brad A. Myers,
Christine M. Neuwirth, and Steven A. Shafer

October 1992
CMU-CS-92-193

DISTRIZUTICN FTATEWWT A
Appioved icr puriic relecse
Distnbuten Unumnad

School of Computer Science
Camegie Mellon University
Pittsburgh, Pennsylvania 15213-3890

This document represents a collaborative effort on the part of the SCS faculty interested in
Human-Computer Interaction, with major contributions from David Garlan, Wilfred J.
Hansen, Michael L. Horowitz, Bonnie E. John, Roy A. Maxion, Philip L. Miller, James H.
Morris, Brad A. Myers, Christine M. Neuwirth, Dean A. Pomerieau, Steven F Roth, Steven A.
Shafer, Mary Shaw, and Maria G. Wadlow

Abstract

The SCS facuity interested in Human-Computer Interaction (HCI) presents its position on
what role HCI can play in Camegie Mellon’s School of Computer Science. We present a short
description of the need for HCI research and recommend a task/human/computer approach to
satisfying that need. After presenting illustrative research scenarios, we draw implications of
adopting this approach for our research and educational programs. SCS is well positioned to
implement this approach, given the interests and skills of our faculty and faculty in other orga-
nizations at CMU. We recommend that the Computer Science Department form a new area in
HCIL.

02 12 i4 o1 92-31330
0 LT

A

Keywords: Human Computer Interaction (HCI), strategic plan, curriculum

frms Prove,
' mie v

. nacecuged
] Li_‘ t_:.A

/.
il
o

Juchifieatter . _

BY-_PQ(. L*. <,

!

{

PR ST RS !
e liio & ‘

]

|

Executive Summary | Avatladilivy fede

Distrisetiien/

-

[Yo
! Awmil and/sr

Dist © Spe:xind

A\

The Problem. Computers have the potential to revolutionize many areas of human
endeavor--delivering memory, data processing, communication, visualization, and control
power for performing all manner of tasks. But many systems fail to reach their full potential
because they are daunting or difficult to use. For every successful computer system (e.g.,
automated teller machines) there exist scores of unsuccessful systems ranging from the
comic (e.g. the international joke of programming VCRs) to the potentially tragic (e.g.,
nuclear power plant control systems).

An Approach. We argue that a fundamental tenet of computer science is that, ultimately,
people use computers to accomplish tasks. This implies that an understanding of human
capabilities and tasks is as important to the design of effective computer systems as an
understanding of computer technologies. The pursuit of understanding the triad of task/
human/computer is the purview of the relatively new, but active and growing field of
Human-Computer Interaction (HCI).

Recommendation. We recommend that SCS include an area in HCI that, within itself and
in cooperation with the other SCS areas, performs research on HCI issues, develops systems
using HCI methods of design and evaluation, and trains students in the theory and skills
necessary to become HCI professionals.

Probability for Success. We believe SCS can contribute extensively in the HCI arena for
both historical and current reasons. Historically, we have had success in many of the
relevant subtasks (e.g., building and deploying real systems, which can demonstrate the
effectiveness of HCI techniques; training students who have gone on to be leaders in the
field of HCI; and fostering good working relationships with other departments at CMU that
will contribute to our understanding of HCI issues). Currently our faculty (both SCS and
elsewhere at CMU) have strong interests in various aspects of HCI and most of the requisite
skills necessary to do important and influential research in HCI.

Structure of this Document. The first section details the problem, including a few short
examples of effective and ineffective systems. The second section asserts the task/human/
computer triad as an approach to solving this problem that SCS could adopt and describes an
implementation of this approach through example research scenarios. The third section
makes recommendations for fitting the training of HCI professionals into the existing
structures of graduate and undergraduate education in SCS. The last section presents
evidence that adopting this philosophy has a high likelihood of success in SCS, including a
taxonomy of HCI research, placing ongoing work at Carnegie Mellon within that taxonomy.

{
i

page |

1. The Problem

While a few computer systems are designed to perform tasks autonomously, the
overwhelming majority have an interface through which humans interact with the computer
system to accomplish a task. A computer system’s interface is one of the most important
factors in determining a system’s success or failure (¢f. Markus, 1983). Moreover, the
interface is a relatively costly factor: estimates concerning the fraction of code required to
support a system’s interface range from about one third to one half (Bobrow, Mittal, &
Stefik, 1986; Myers & Rosson, 1992).

A good example of a successful interface between humans and computers is the automated
teller machine (ATM). For the most part, these machines are tremendously successful at
handling a number of banking tasks. An example of an unsuccessful interface is the VCR:
the average person’s inability to program one has become an international joke. If ATMs
have been so successful, why are so many other user interaction systems so abysmal? Two
reasons suggest themselves. First, perhaps it’s because we don’t understand the implications
of “scaling up” in the domain of human-computer interaction (HCI). Certainly part of the
reason for the success of ATMs is that their tasks are few and of limited scope. User goals
are usually well defined, and information and instructions displayed on ATM screens can be
readily matched to users’ goals. Moreover, most people are familiar with the common
banking transactions handled by ATMs, so training is not a significant issue. As a result,
users find it easy to make an educated guess at how to use ATMs to accomplish their goals.
As tasks become more complex and less familiar, as the amount of information to be
absorbed increases, and as decision making encompasses more and more variables, the best
ways to facilitate interaction between humans and computers are little understood.

However, the task of recording TV shows is only barely more conceptually complex than
withdrawing money from the bank, so scale-up cannot be the source of the VCR’s legendary
problems. A second reason this and so many other interfaces are abysmal, may be that
designers need more awareness of HCI concerns and better training in the theory, research,
and practice of HCI. As long as the speed, size, and cost were the limiting factors in com-
puter systems, the emphasis of computing practice and training was placed on developing
faster and cheaper computers and algorithms to process data. Programs were written, and
devices designed, with little or no regard to the needs of the people who were to use them
(or their needs could be anticipated through introspection because most of the users were
technical people, just like the programers). Programs were also conceived as individual
stand-alone entities rather than as pieces of an interwoven fabric of people, equipment,
information, and data processing tasks. Yet, such a fabric is actually the characteristic of real
workplaces, in which computers are part of larger integrated systems of people and
machines. Because of these historical forces, computing is still viewed as a somewhat exotic
technology, with only the most mundane computing tasks accessible to the general user pop-
ulation, and more sophisticated tasks accessible only to a few highly technical *“gurus.”
Computing has not realized its full potential to aid all people in all activities and the reason
is the lack of attention to the interaction of humans, computers, and task requirements in
workplace systems. In the last decade, some very fundamental advances have occurred such
as graphic interfaces to computer programs, WYSIWYG word processing, crude speech

page2

input, and sketch interpretation, which suggest the direction that human-machine interfaces
might evolve, but do not by themselves definitively solve the problems. There is a need for
substantial further research in HCI to unlock the potential of computers to contribute to all
aspects of human activity, and a need to integrate existing results into the computer science
curriculum.

This is the time to reverse the historical pattern of computing development. Today, comput-
ing hardware and software have advanced to the point that computing power in massive
amounts is available cheaply and in small packages that can appear at many places in the
office, home or other environments. With this ubiquity, speed, and capacity, vast amounts of
raw data can be collected, generated, and presented to a user, and the limitation on complet-
ing a complex task has become the user’s ability to sift through and interpret this data to pro-
duce useful information, rather than the computer’s ability to store or process it. In very
complex systems, if information is poorly presented it can overwhelm users, with problems
or even disasters as a result. Thus, the ultimate test of computing is whether it delivers real,
important information to people with real, practical problems, in a form that they find use-
ful, effective, understandable, and significantly faster and cheaper than the alternatives.

page 3

2. An Approach: The Task/Human/Computer Triad

To summarize the previous discussion in the form of a central tenet of computer science:
Ultimately, people use computers to accomplish tasks. This implies that an understanding of
human capabilities and tasks is as important to the design of effective computer systems as
an understanding of computer technologies.

2.1. The Task/Human/Computer Triad

The pursuit of understanding this triad of task/human/computer is the purview of the rela-
tively new, but active and growing field of HCI (The field has been actively researched for
at least fifteen years, and it has had its own conferences and journals for about ten years).

Our understanding of the triad of task/human/computer is depicted in the following figure:

Task

:

HCII Design

Human » Computer
Technology

Figure 1. The Task/Human/Computer Triad

According to this figure, a fundamental element in the design of effective systems is to
ascertain what tasks users need to carry out. Frequent tasks may be relatively easy to
identify, but occasional tasks, exceptional tasks for emergency conditions, and repair tasks
to cope with errors in using a system that may not have been built yet are typically more
difficult to discover. Methods for doing task analyses more effectively, for representing
tasks, and for mapping tasks to user interface functionality are active research areas in HCI.
Research in HCI seeks to understand tasks with a view to designing computer technologies
to enhance their performance.

A second fundamental element in the design of effective systems is an understanding of the
people using them. Depending on the task, this understanding may need to include their
perceptual capabilities (capacity to identify an object in context, color vision and
deficiencies, peripheral vision, contrast sensitivity, motion sensitivity, etc.), cognitive
characteristics (short-term and long-term memory, learning, decision making, attention and
set, search and scanning, etc.) and their social/political and organizational contexts (power

page 4

relationships, organizational structure, communication patterns, goal conflicts, etc.). To
enhance this understanding, HCI research produces methods for measuring, modeling, and
evaluating human performance with computer systems.

The third element, computer technology, includes visual displays, manual input devices,
and, more recently, sound and gesture recognition; interaction styles and techniques (e.g.,
command languages, menus, natural language interfaces, direct manipulation,
demonstrational interfaces, etc.); and user interface development tools and systems. These
areas are the traditional realm of computer science and will continue to play an important
role in any task/human/computer system.

The elements of this triad interact extensively, hence, double-pointed arrows connect the
corners of the triangle. For instance, technologies influence people (e.g., different computer
response times cause people to choose different strategies for accomplishing a task, Teal &
Rudnicky, 1992). Conversely, human capabilities influence technologies (e.g., the
limitations of human memory have influenced the design of menu-driven interaction styles).
Tasks influence human capabilities (e.g., people change their knowledge about the task as
they attempt to perform the task, i.e., they learn). Human capabilities influence the tasks
people need to perform (e.g., people simply cannot remember all the information in a
database, so a search task arises). Finally, different tasks call for different technology (e.g.,
text-editing can be done naturally with a keyboard, but graphic editing requires a drawing
device like a mouse or pen) and technology can enable or limit tasks (e.g., spreadsheets have
unleashed hundreds of new tasks).

2.2. HCI Research Scenarios

Research around the periphery of the task/human/computer triad can inform the design of
computer systems. The knowledge and techniques resulting from HCI research can help
meet the challenges that arise when designing systems of people and artifacts to accomplish
complex tasks. Design, in turn, provides the arena within which research problems in HCI
can be identified and investigated. To illustrate the potential contribution of HCI in concert
with other areas of computer science, the remainder of this section describes the challenges
faced in three hypothetical research areas: computer-aided laparoscopic surgery, crisis
action planning, and software development.

2.2.1. Computer-Aided Laparoscopic Surgery

Laparoscopic surgery is a technique in which narrow instruments and fiber-optic cameras
are inserted into the patient’s body through narrow tubes (5-10mm diameter). The images
are presented on a video screen and the surgeons look to that screen to view their working
area. Currently, laparoscopic surgery is an attractive alternative to traditional surgery
because it needs a much smaller incision and, therefore, requires substantially shorter recov-
ery times. However, the procedure is considered difficult and is practiced by relatively few,
highly-trained, surgeons.

Medical and engineering researchers believe that image processing methods and robotic

page 5

technology could greatly facilitate laparoscopic surgery. For example, technology can pro-
vide the ability to look into the patient’s body—much like Superman’s X-Ray vision—with
the surgical team wearing virtual reality goggles and able to operate as if seeing through the
patient’s skin. Another improvement would be manipulators that could perform tasks such
as stitching and tying sutures at a distance, allowing the surgeons’ movements to be rela-
tively simple while the instruments perform complex manipulations and supply tactile feed-
back to the surgeon. While this technology is exciting in its own right, our interest is in the
HCI challenges that such an application raises.

What data do surgeons need and how should the surgery team interact with it? Many techni-
cal possibilities for the display of data can be imagined. For instance, a system could
enhance the video information collected by the fiber-optic cameras, perhaps by superimpos-
ing images of solid models or other interpretations added by the computer. These models
might have been derived from the image data itself, or from other processes such as a prior
CAT scan. The interpretation data may be very direct, such as solid models of organ struc-
tures, or it may be very indirect, such as measurements of critical quantities or dimensions,
or information from reference texts or other sources. Such abstractions are themselves an
important topic for HCI research in data visualization. Additional information might include
advice from artificial intelligence agents, such as a circle drawn around anomalous tissue
that was detected by the agent, or a presentation of imagery from previous surgery for com-
parison to analyze change over time. The data could be displayed at any convenient size,
allowing the surgeon to zoom in on features of special interest and examine them in more
detail; and with 3D modeling in the computer, the surgeon could even “walk around” the
structures to see them from all points of view. In such scenarios, systems would need to
communicate not only the data itself, but also the limits of the actual knowledge of the sys-
tem, so that the surgeon could distinguish what is known to be present from what the com-
puter “imagines” to be present as a result of computations and abstractions from the actual
data.

On the input side of the system, traditional means of inputting information and commands to
computer systems, namely a keyboard and a mouse, are impossible for a doctor to use dur-
ing surgery. Alternative modalities are required for effective interaction. For instance,
speech recognition could be used to call up relevant images from previous operations.
Tracking of the surgeon’s gaze might take the place of a mouse, allowing the surgeon to
point at internal structures without releasing the laparoscopic instruments. The key to effec-
tive communication is not to simply provide alternative input modalities, but to carefully
analyze how each modality can most naturally be integrated into the surgical procedure.

Beyond the imaginable technical possibilities, however, is the issue of what information the
surgical team needs, and how they might interact with it. These questions raise challenges in
task analysis of surgeons’ activities and cognitive analyses of needs and problems. What
cognitive problems do surgeons experience when doing this task and how can they be allevi-
ated? What data will augment surgeons’ performance? What is the best way to obtain the
answers to these questions?

What is the best way of gathering data about the task and about the surgeons? Unobtrusive
collection of information about the task seems crucial. Surgeons, like fighter pilots, are

page 6

unlikely to provide protocols while in the midst of working. Methods of measuring the sur-
geons’ activities, such as non-intrusive eye tracking or other monitoring methods, are
needed to provide information about the surgeon’s focus of attention without interfering
with the surgical procedure. In addition, we need to develop techniques for obtaining reli-
able information about knowledge representation, and perceptual and attentional focus, off-
line from the actual performance of the task. The play-back and simulation technology
described for training (see below) may provide opportunities for gathering such informa-
tion.

What are the perceptual and psychophysical parameters of the laparoscopic instruments
and how can they be better designed? Another research area is the manipulator instruments
themselves. Beyond the classic robotics issues related to designing manipulators that accu-
rately perform the task (e.g,. tying a knot in a suture), are the HCI issues of how the instru-
ment interacts with the surgeon. In traditional surgery, the surgeon received tactile feedback
from the instruments, but in laparoscopic surgery today, the long, thin, narrow instruments
have reduced tactile feedback and the surgeon can only know that the manipulation of the
instrument was successful by looking at the video monitor. Computer-enhanced instruments
could provide additional feedback, tactile and auditory as well as visual. Research is needed
not only in the development of sophisticated control and tactile sensing and input devices,
but also in assessing the added value of these modalities. This would include basic studies of
each modality, starting with the perceptual and psychophysical parameters of each. When
instruments are developed that carry out even more complex actions, they may need to pro-
vide initial “what-if” information to the surgeon before actually going to work. If such
actions form a sequence, the surgeon would need the ability to visualizc and possibly mod-
ify each step of the plan before the device begins operation.

How do members of the surgical team coordinate and what problems of coordination are
there? Surgery is a complex human coordination problem, and it is unlikely that any artifact,
no matter how well conceived, will fit easily into the already finely tuned surgical world
without a detailed understanding of the task, the team, and the organizational context of sur-
gery. For example, the coordination of many different data sources (such as the anesthesiol-
ogists’ data) so that the team could see the whole picture calls for careful design of visual
displays and understanding of the cognitive load on various team members. Or perhaps the
rapid formation of teams with the best set of skills is a problem. Once the view of the
patient’s internal organs is in electronic form, and the surgical team is wired to electronic
input and viewing, the computer could provide access to off-line information and analysis.
For example, a remote expert might guide the operation from a distance, thus leveraging the
expertise of a world-class specialist across many locations or projecting expertise into an
otherwise inaccessible or dangerous area. Here, developments in computer supported coop-
erative work could contribute to mechanisms such as “floor control” (coordination of many
participants), flexible coupling of views among team members, or the formation of tempo-
rary teams. This raises issues in technologies for reliable, distributed, synchronous coordi-
nation. Finally, surgery is probably one of the most intense group activities known, and there
could be great scientific value in studying a collaborative activity that has already been the
subject of intense methodological development by the practitioners themselves. (Contrast
this, for example, with the study of group software meetings, where the perceived urgency

page 7

of the activity and coordination skill of the participants are very low.) Except for the close
maneuver of jet aircraft, there is probably no more highly studied and trained-for group task
than surgery.

How should the system be evaluated? Any new surgical device or procedure must be sub-
jected to extensive evaluation before it is tried in the field. The talents of human factors
experts and empiricists will be essential in the early evaluation of these devices; they cannot
simply be distributed on computer disks and tried by a vast user community. Instead, one
must design tests and experiments that will establish the effectiveness and safety of the new
procedures. It may be possible to leverage synthetic virtual reality and simulation models,
such as cognitive models of users, to generate new methods of testing effectiveness. This
might lead to a reduction, though probably not elimination, of the need for extensive testing
on animals.

How do surgeons learn the tasks and can the system itself be leveraged to help in their train-
ing? The same systems that record and enhance the visual aspects of surgery, and provide
tactile and auditory feedback through the instruments, could be used to “play back” particu-
larly elegant surgical procedures. They could be paused to allow an instructor to discuss a
fine point, fast-forwarded over the routine aspects, reversed and shown again for emphasis,
etc. The student could see, hear, and feel what the expert experiences. Also, a veridical sim-
ulation could provide realistic practice for the student. To make effective use of these tech-
niques, research is also needed in how people acquire skills and knowledge through
simulated experience in addition to book-learning or through lectures.

2.2.2. Crisis Action Planning

The previous scenario highlights challenges faced in developing technologies for a
relatively small, well-orchestrated group of highly trained experts. This scenario focuses on
emergency response to an earthquake or other crisis. It illustrates the HCI challenges for
situations requiring time-critical, large-scale, coordinated efforts of diverse user
populations. These situations are characterized by:

+ the need to collect and analyze large amounts of rapidly changing, unreliable, and
incomplete information from numerous, diverse sources;

+ the involvement of many organizations that have different perspectives and meth-
ods for solving problems and that must provide each other with information and
analyses;

» the need to create and iteratively revise effective plans and schedules involving
highly constrained and interrelated activities and resources.

In this scenario, we focus on the related tasks of acquiring, visualizing, manipulating, and
communicating information, and the support of team coordination, as organizations
cooperate to plan and execute emergency relief.

How can data be collected reliably and quickly during a crisis? Effective response to crises

page 8

depends on the ability of command centers to receive accurate descriptions of damage,
medical and fire emergencies, food, water and evacuation needs, and many other conditions.
Information is often gathered and reported by people inexperienced at identifying features
relevant for response (e.g., minimally-trained volunteers may be able to report a fire, but
may not think to report its magnitude, the potential for spread, the building material, etc.).
Information collected by different organizations may overlap, leave gaps, or use different
vocabulary. Information collected in the field is communicated slowly, either verbally via
overburdened radio channels or on paper by courier. People often don’t know which
command centers to contact for each problem.

From the technology viewpoint, suppose disaster workers could be supplied with a hand-
held computer and radio communication device that enables interactive collection of
relevant information for a variety of situations. Capabilities might include reporting
assistance, hands-free or pen-based input, efficient and secure data-burst transmission,
automatic location-sensing, call directing, and integrated voice and data communication.
However, even if the technical foundations for such a device were feasible, its success
would depend heavily on careful HCI analyses. It is necessary to understand the capabilities
and expertise of differing users, the relation between the task of emergency reporting and
the other tasks users perform in the field, the demands of environments in which users work
(e.g. lighting levels), the kinds of messages that must be encoded and whether they require
verbal contact or verification from recipients, the legal, social and historical constraints on
who can report different types of information (e.g., can untrained volunteers provide legally
acceptable damage reports for federal or commercial financial assistance?), and the relation
between this device and others (e.g., is it integrated with ambulance radios?). All of these
questions illustrate that an HCI approach requires a broad view of factors influencing total
system usability.

How can information from diverse sources be integrated for shared use? Once information
reaches a command center, it must be integrated with other information to form the basis for
decision-making, a staggering technological task. Relevant information may already exist in
many disjoint databases: topographic maps, aerial photographs, utility company records,
inventories of supplies, and so forth. Currently, human experts from each of the
organizations that have existing databases manipulate their respective databases
independently and verbally share information with other individuals, but if experts are
unavailable or if individuals do not know which organization’s database contains the
necessary information, this system brecks down. Computerized intelligent agents could be
used to understand the content of databases, maintain updates, manage their diverse
interfaces, and integrate the results of complex cross-referenced queries, so that any
individual could easily access the necessary information in any database. Again, however,
social and organizational aspects of the task must be considered (e.g., some databases may
be proprietary under normal circumstances; how might this affect access to information in a
national disaster?). In addition to the relatively static databases listed above, dynamic
databases will be required to continuously update the data with information flowing in from
the field (with all the associated reliability problems) and other, unforeseen databases may
need to be incorporated into the system on the spot (e.g., Taco Bell was an unforeseen
organization participating in the Hurricane Andrew response; such organizations would

page 9

bring their own databases of food inventories and mobile kitchen availability).

How can people use this information, individually and in groups? Assuming the
technological problems of data integration are solved, these data must ultimately be used by
humans to aid in their response planning. With so much data, the issue of effective
presentation and manipulation of information is of primary importance. Preliminary
analysis of the crisis management task reveals that many tasks are map-based, (e.g.,
implementing mass care requires identifying where the victims are, where the food is, what
routes are passable between the location of the food and the location of the victims, where
the ambulances are, etc.). Even assuming a map-based display of information, a raft of HCI
questions arise. How should different types of information be encoded on the map, using
what dimensions (e.g., shape, color, size)? How can uncertainty, or the continuous nature of
some information be depicted (e.g., the degree of impassability of roads)? Given space
limitaiions of a map, how do you handle over-crowding of information? How can other
modalities, like animation or voice annotation, be effectively used? What interactive
techniques are effective for manipulating data (e.g., crossing off totally impassable roads
with gesture recognition)? How might different subtasks, or different users (e.g., color-blind
volunteers) benefit from different displays of the same information? Can automatic display-
generation systems help solve some of these problems?

In addition to questions that pertain to individual use of data, the group-work aspect of crisis
action planning introduces even more complications. How can a shared display adapt to the
different conventions of information display that people from different organizations might
bring with them? How can several people manipulate the same data presentation at the same
time? What additional complications arise if some of those people are remotely located?
Might serendipitous benefits be realized from public display of this information, that is,
providing the map on an entire wall of the command center so that everyone could see it at
all times, rather than confining it to the screens of workstations only available on demand?

How can we promote communication and collaboration among groups developing courses
of action? The preceding questions concerned the collection, manipulation and display of
information directly related to the crisis at hand. In addition, crisis action teams need
information about the roles, the make-up, and the status of the teams themselves. Anecdotal
evidence suggests that this information is often lacking in crises; people report that they do
not know whom :0 contact to report or ask for information and critical roles are often
duplicated or omitted. Again, some of this information can be pre-planned and built into a
systemn prior to the occurrence of a crisis. For example, the Federal Response Plan lays out
the anticipated responsibilities of several organizations involved in disaster response (e.g.,
the Red Cross, the National Guard, etc.). Such information could be pre-programmed into a
database with easv access for all participants. As with the physical data (e.g., road
conditions), however, even these anticipated roles are dynamic during a crisis and must be
kept up to date. As noted previously, unanticipated parties may also respond (e.g., Taco
Bell) and it would facilitate planning if their capabilities, availabilities, and activities were
tracked in a central facility. In times of crisis, however, these organizational bookkeeping
activities often seem less important than actually providing services to the victims;
therefore, the overhead of maintaining this information in traditional ways may prove

page 10

excessive. This well-known problem might be circumvented by clever design of the more
task-oriented systems. That is, since all the groups will want data from the central
information systems, those systems could be designed so that their use has the side-effect of
updating the organizational database.

How should technical solutions be evaluated? Because of the number, complexity, a. d
inter-relatedness of activities that need to be coordinated in large actions like these, it is
difficult to assess the effects of individual technical solutions. An empirical, laboratory,
hypothesis-testing approach to evaluation, often used to choose between interface
possibilities in less complex systems, is inappropriate for testing the entire system. More
sophisticated empirical techniques, models of interaction, or other analysis tools will have to
be developed to test software and hardware devices before they are put into the field. In
addition, more sophisticated measures than the typical performance time or occurrence of
errors need to be developed (e.g., the quality of plans and services needs to be made
operational). At very least, the software and devices should be built with the capability of
automatically recording their use, so post-disaster analysis of what parts of the system were
actually used can be performed.

2.2.3. Computer Program Development as a Human Activity

Software development is a pervasive and central task in computer science whose nature is
changing rapidly. The traditional practice of coding systems from scratch, of maintaining
those systems in terms of that code, and of relying on the virtuosity of individual, skilled
programmers has not scaled to the needs of large, complex system development. In its place
we can expect future software development to center around component-based software
construction, reusable software design frameworks (or architectures), and distributed,
cooperative interaction between developers.

In this context traditional tools and their interfaces will no longer suffice. Instead of simple
text editors, compilers and debuggers, which are oriented to a coding-from-scratch
development process, developers will need sophisticated software design tools. We envision
that these tools will allow new software to be interactively and incrementally built from
existing components, permit the codification and dissemination of good software
engineering practice, aid the process of cooperative software development, and raise the
level of abstraction at which software is developed and enhanced. Such tools will require
advancements on a number of research fronts: here we are primarily interested in the part
that HCI can play in unleashing the full potential of the new approach.

These new developments in software engineering raise the following HCI challenges:

Will tools for building software from the “interface toward the computer” improve
designers’ performance? Increasingly the developmental bottleneck for many systems is the
construction of the user interface software. Based on emerging HCI research we can
envision a whole new paradigm for constructing such systems: software is built by
designing the user interface first, rather than adding the interface onto separately
implemented functions. In this paradigm, users with little special training in programming
use graphical displays and tools to indicate what the result should be. These interface

page 11

construction tools would aid in analyzing the interface, to assess, for instance, its demands
on human performance, how much it requires end-users to remember, what cues it gives the
users as to what to do next, the efficiency of user actions necessary to accomplish
benchmark tasks, and what errors might be likely to occur. Such immediate HCI analysis
tools would encourage exploring many interface alternatives and iterative design.

What representations of design information are useful for software designers? Design
information is currently represented by voluminous textual documents. The situation must
be substantially improved. One plausible approach would use rich graphical representations
for characterizing system structures. This would go well beyond the simple graphical design
notations that are used today. For example, instead of using simple lines to depict
component interactions in a design, it should be possible to use a varied set of visualizations
to distinguish between kinds of interaction: dataflow, procedure call, broadcast, and so forth.
Relationships between parts of a design could be handled in a similar way. For example, a
graphically-depicted design could be turned into executable code by having the system
designer indicate visual links between library components and the parts of the design that
they implement. The contribution of HCI may not be in providing the insight that leads to
the discovery of a new representation for design information. It may be, instead, to
determine which candidate representations would be most useful to software designers by
understanding the designers and their task through cognitive modelling and empirical study.

What coordination problems do teams of programmers experience and can tools be devised
to alleviate or eliminate those problems? We envision an environment in which multi-
person software development is supported by tools that help developers coordinate their
interactions. Such tools would provide coherent visible access to the large amounts of data
that define the current status of a project. They would integrate smoothly the various
functions of code re-use, version and configuration management, project tracking, cost and
time estimation, bug tracking, and resource sharing. HCI can help us tune such a collection
of tools. It can tell us when a tool is functioning well, when a tool must be polished,
redesigned, or discarded. Another exciting application of HCI research in cooperative
software development is in the management of shared knowledge. We look to an active
system that helps direct its multiple users. The system has a model of what its users know,
what they know in common, what knowledge is available from software component
libraries, and what the users need to know to make progress. This work will not only push
ahead software development, but it will also make contributions to HCI and the foundations
of cognitive science.

What do good designers know and can that knowledge be represented in a way that would
augment designers’ performance? Good software developers gradually acquire a body of
knowledge about good system design. Currently this knowledge lives in thc heads of those
designers, however, or is scattered throughout the documentation of particular systems. We
can imagine support for software development in which this information is codified and
made available to other developers. This could take the form of on-line handbooks. It could
also be embodied in semi-automated design agents that assist users in applying the
knowledge to particular problems. Under this scenario, a user would move from system
requirements to an implementation by consulting handbooks or interacting directly with

page 12

design tools that subsume large parts of the analysis and selection. These handbooks would
be tied into the component and design libraries so that design is smoothly integrated with
component selection.

What human-computer interaction data is most important to measure when developing a
system and how should that data be represented to software designers? We can imagine a
world in which large-scale applications are developed by gradual transformation of proto-
types into working systems. To make this possible, the development environment will need
to provide strong interface support for keeping track of the system parts that are not yet fully
instantiated and by allowing developers to test and analyze incomplete systems. An essen-
tial aspect of this approach will be the use of non-intrusive monitoring. As a prototype
evolves, data will need to be collected and analyzed in preparation for the next iteration. The
key HCI concerns here are to provide developers with ways to know what to monitor and
with appropriate visualizations and organizations of data that allow the developer to analyze
the results of the monitoring activity.

2.2.4. Summary of Research Scenarios

We believe that these three scenarios have illustrated the richness of the HCI approach to
designing task/human/computer systems. Task analysis, the consideration of human capabil-
ities and propensities (both cognitive and social), as well as the design of new technology,
permeates these examples. They illustrate the necessity for the knowledge and skills of
interdisciplinary teams of researchers and developers, collaborating for the common goal of
delivering an integrated, usable, effective system for accomplishing the task at hand.

page 13

3. HCI Education in SCS

Success in the projects outlined above will require not only awareness of HCI issues by all
involved computer professionals, but also the skills of specialists trained explicitly in HCI
tools and techniques. We recommend that our educational programs be modified to provide
this awareness and training. Some teachers throughout SCS have already included HCI
material in their courses, but it is now time to coordinate these efforts and augment them
with explicit instructional goals.

We recommend that every student who completes a degree at any level in SCS at CMU have
at least a minimum level of understanding of HCI. They should understand that much of CS
involves designing systems to aid people in accomplishing tasks. Understanding the tasks,
and the capabilities of the people, in relation to the systems will produce better designs and
more effective systems. They should further understand that there is a field of Human-
Computer Interaction that includes:

« Techniques for understanding tasks and their relationships to the people who per-
form them and the computers that aid in that performance.

» Knowledge about the capabilities of people and techniques for understanding the
role of those capabilities in the context of tasks and computer systems.

« Knowledge about interface styles and I/O devices; when to use them, how to build
them effectively into a system, and how to evaluate them.

» Tools for designing and building interfaces.
¢ Methods of evaluating the effectiveness of human-computer systems.

» The relation of HCI to the rest of computer science (e.g. the relation to program-
ming languages, software engineering, artificial intelligence, verification, hard-
ware, etc.).

3.1. Undergraduate Education

ACM SIGCHI has recently published a report on Curricula for Human-Computer
Interaction which outlines HCl-oriented curricula in CS, Psychology, or Information
Science departments. That report, tailored to the particular needs of SCS, is a basis for the
following recommendations.

We would like to see the fundamental tenet of HCI (that people use computers to
accomplish tasks, so an understanding of human capabilities and tasks are as important to
the design of effective systems as an understanding of computer technology) be infused into
the general CS curriculum. That is, we see many opportunities for HCI issues to be

page 14

discussed in the context of other more traditional CS courses. To illustrate, the following
required courses listed in the “B.S. in Mathematics/Computer Science for students entering
in Fall 19917, could include material relevant to HCI:

¢ 15-127 Intro to Programming & Computer Science. Along with the case studies
currently offered, introduce the triangle diagram of HCI systems and design.
Assignments might include programming an interactive interface.

* 15-211/212 Fundamental Structures of Computer Science I & II. Introduce interac-
tion styles (command line dialogues, menu systems, etc.) as fundamental struc-
tures in the context of programming and formal languages.

» 15-312 Programming Languages Design & Processing. Introduce the design of
programming languages as an interface between the user (a programmer) and the
computer.

The infusion of HCI concerns into several required courses could satisfy the educational
goal set above. In addition, HCI material may also be appropriate for presentation in the
following elective courses (again, for illustration, selected only from those offered in the fall
of 1991).

» 15-384 Artificial Intelligence: Robotic Manipulation. Issues in the human interface
to programming robots or tele-manipulation of robots.

* 15-412 Operating systems. Issues in the human use of operating systems (e.g., the
command language for shell operations, help systems, etc.).

* 15-413 Software Engineering. This course description already includes “documen-
tation” and the “design of friendly user interfaces.” HCI issues also arise in the
software development process itself (e.g., collaborative version-control systems).

* 15-682 Engineering of Knowledge-Based System. Issues in the user interface of
knowledge-based systems (e.g., what information about the system’s reasoning
needs to be presented to the user to allow the user to evaluate the system’s conclu-
sions).

We understand that the relative newness of HCI as a field, and its interdisciplinary nature,
often makes it difficult for instructors to gather materials appropriate for undergraduate
coursework. The HCI faculty will be available to instructors wishing to include HCI
concemns in their classes, to help develop “modules” of a few lectures and supporting
materials that can be incorporated into their courses. We expect that this infusion process
will develop over time, as faculty interest and opportunities allow.

We recommend the eventual introduction of two HCI courses as undergraduate CS electives
to provide a solid background for our students interested in concentrating in interface
development or HCI research. The ACM SIGCHI Curricula report suggests two such
courses for a CS curricula. The objectives of their HCI-CS1 are “to provide an adequate

page 15

basis in software design and implementation for user interfaces...[and]...an appreciation of
the importance of further subjects covered in CS2.” The objective of their HCI-CS2 is to
“train students in the underlying science and its application to user interface design. It is an
engineering course replete with engineering models drawn from psychological theory.” We
suggest that for SCS’s program, courses similar to these be developed, but that they be
offered in reverse order. The first course presenting the HCI issues and underlying science,
and the second course using that science to build systems. These courses would eventually
be at the 300-level and have an associated project.

In addition, there could be more specific HClI-related courses, depending on faculty
interests. Advanced undergraduate courses (400-level and above) might be cross-listed with
the Masters or Ph.D. courses.

3.2. Masters-Level Education

The specialized knowledge and skills that are required of HCI professionals go beyond what
can be taught in an undergraduate CS curriculum. Currently at CMU, skills at this level,
coming from diverse disciplines, are delivered through interdisciplinary “professional
masters” programs, €.g., the degree program given by the Information Networking Institute,
a joint venture between the Graduate School of Industrial Administration (GSIA) and SCS,
or the Masters of Software Engineering (MSE) program, a joint venture between the
Software Engineering Institute (SEI) and SCS.

A professional masters in HCI would teach practical skills useful to the design of task/user/
computer systems, and be interdisciplinary with other appropriate organizations at CMU,
possibly the Departments of Psychology or Social & Decision Sciences, or GSIA. We
expect that a professional masters program in HCI would require between one and two
years, with at least 40% of the time occupied by hands-on project work. Courses might
include the skills that are taught in tutorials at the ACM-SIGCHI conference. For example,
design of visual information presentations, building computer-supported cooperative work
interfaces, experimental design in HCI research, GOMS analysis, cognitive walkthroughs,
the task-artifact framework for HCI design, icon design, and so forth. Course offerings
might be shared with the elective graduate courses in HCI, presented below, or with
advanced undergraduate courses.

An evolutionary path to a fully-formed professional masters in HCI might be through an
HCI track in the MSE program. An MSE-HCI track would consist of 3 to 4 semester
courses within the regular MSE program. This track would have at least one pure HCI
course and additional material and experiences that are HCI in nature (e.g., Research
Methods in Cognitive Psychology). The HCI course may be the same one delivered in the
undergraduate program, with an additional, substantive project for the graduate students.

In either Masters-level program, project work would be required to exercise the skills
taught. Therefore, the HCI faculty are prepared to supervise Master-level project work,
either individually or in studio courses. -

page 16

3.3. Ph.D. Education

Meeting the previously stated goals of developing an understanding of HCI for Ph.D.
students would not require a Core Unit in the Ph.D. curriculum. Instead we propose a series
of lectures along the lines of the 3-hour “Introduction to HCI” tutorial at SIGCHI. Students
wishing to learn more about HCI would have ample opportunity in the electives discussed
below.

The existence of an HCI area in SCS will generally raise the consciousness of all students
pursuing work that creates artifacts. We hope that this will cause more atiention to be paid to
the user interfaces of such artifacts. In addition, we expect that students wishing to claim
that their systems allows some person, or team, to be more productive, will want to
substantiate their claims by techniques that are well established in the HCI community. The
HCI faculty are available to help with teaching and/or overseeing the execution of these
techniques, including serving on the committees for theses wishing to make such claims.

Some students will concentrate their study in the area of HCI. It is important that these
students demonstrate at least a rudimentary mastery of the skills of the trade. The skills are
important for three reasons. First, they will help the students in doing their own research.
Second, they will facilitate an understanding of the research of others in HCI. Third, they
provide a foundation for working as part of interdisciplinary team on projects. These skills
should be demonstrated in course or project units, prior to beginning the thesis. They
include:

* Build a system, or modify an existing system, with a UI development tool and/or
prototyping tool or UIMS.

* Perform an empirical evaluation of an existing system or system component.

» Use a formal analytic method to evaluate a task/user/computer system prior to its
implementation. (Typical formal analytic methods include GOMS, cognitive or
programming walkthroughs, and task-artifact claims analysis.)

A thesis project in HCI will not be confined to a single comer of the task/human/computer
triad. Rather, an HCI thesis will investigate the influence of a theory, method, or system on
at least one of the other two corners and/or articulate what is learned about designing a
computer system.

Elective graduate courses in HCI will serve two purposes: to teach and exercise the
rudimentary skills discussed above, and to explore research issues in the field of HCI. The
skills courses may overlap with Masters-level coursework in HCI and are listed above. The
research issues courses will reflect timely interests of the faculty and students. Such research
issues might include:

» Comparative cognitive architectures for HCI modeling.

+ User interface software.

page 17
Visual programming techniques and methods for their evaluation.
Advanced interface techniques and multimedia.
User-centered design techniques.
Computer-Supported Cooperative Work: study, design and implementation
Intelligent interfaces.
HCI in Robotics.

Evaluation/measurement techniques.

page 18

4. Probability of Successful HCI at CMU

We believe SCS can successfully implement the task/human/computer research and educa-
tional approach for both historical and current reasons. Historically, we have had success in
many of the component parts of this task, for example, building and deploying real systems
(which can demonstrate the effectiveness of HCI techniques). Over the past twenty years,
we have trained graduate students who have gone on to be leaders in the field of HCI. We
have fostered and maintained excellent working relationships with other departments at
CMU, (e.g., Psychology and GSIA) that will contribute to our understanding of HCI issues.

The most compelling reason for optimism is that our faculty (both SCS and elsewhere at
CMU) have strong interests in various aspects of HCI, and the requisite skills necessary to
do important and influential research in HCI. This section illustrates the breadth and depth
of these interests (i.e., the critical mass of HCI research already underway) by listing HCI
research areas and the faculty at CMU who are already doing research in those areas.

Understanding Human Information processing
— How do people learn and perform computer-based tasks? If we understood better
how people operate, then it would be easier to design and evaluate user inter-
faces. This research is sometimes performed by cognitive psychologists.

* Models of cognitive architecture (can we create a computer program that performs
similarly to the way people do?) — John Anderson, Bonnie John, Jill Larkin, F.
Javier Lerch (GSIA)

* How do human memory, motor skills, attention, problem solving, and learning
impact the design of the computer interface (including the documentation)? —
Bonnie John, Jill Larkin, Karen Shriver (English)

» The study of individual differences, including disabilities and skill deficits (e.g. in
reading ability), and how these impact user interfaces — Steve Roth

New interactive techniques, devices, and modalities
— How can people and computers communicate?

Natural language (English, etc.) understanding and generation — Robert Frederk-
ing

*

Speech understanding and generation, lip reading — Alexander Hauptmann, Xue-
dong Huang, Raj Reddy, Alex Rudnicky, Alex Waibel

» Gestures (when the path that the input device travels through is interpreted, such as
drawing an X over an item to delete it), character recognition, pen-based comput-
ing — Roger Dannenberg, Takeo Kanade, Brad Myers, Dean Rubine, Alex Waibel

Video and other media included in an interface (multi-media) — Roger Dannen-
berg, Dean Rubine, Scott Stevens (SEI)

page 19

* Integration of multiple input and output media, multi-modal interfaces — Roy
Maxion, Alex Rudnicky, Alex Waibel

» On-line help systems — Roy Maxion

« New interaction techniques using a mouse and keyboard — Brad Myers, Andrew
Witkin

» New hardware input devices, like data gloves, eye tracking, etc. — Roy Maxion,
Dean Pomerleau, Alex Waibel

* Designing interaction techniques to deal with human error — F. Javier Lerch
(GSIA), Roy Maxion

» Output devices (3D, head-mounted displays, etc.) — Mel Siegel

Analysis and Evaluation
— Given that you want to create a computer-based application, how do you know
what the interface should be like? After you have created an interface, how do
you know if it is any good?

» Task analysis (analyzing the task the user will need to do) — Bonnie John, Roy
Maxion

* Model-based analysis (using a model of human performance to evaluate a specifi-
cation of an interface; this does not require the interface to be implemented yet) —
Bonnie John, Alex Rudnicky

* Applying formal methods of software engineering to interactive system design
(using mathematical models for system description to embody claims about usabil-
ity) — Gregory Abowd

* Methodologies for evaluating implemented or prototyped interfaces using experi-
ments — Bonnie John, Roy Maxion, Alex Rudnicky

» Usability engineering (embodying the analysis of usability into the design and
implementation process) — kov Maxion

» Usable documentation — Roy Maxion, Karen Shriver (English)

Graphic Design
— The look of the interface.

» Typography, icons, graphical layout, presentation, organization — Dan Boyarski
(Design Dept.)

page 20

User

Interface Software
— How do you implement an interface?

Tools for prototyping, design, construction, and analysis of user interfaces; tool-
kits, UIMSs, interface builders — Dario Giuse, Wilfred Hansen, Brad Myers,
Mark Perlin, Dean Rubine

Models for interaction (transition networks, event languages, automata, con-
straints), architectures, verification of software against the models — Gregory
Abowd, Dario Giuse, Michael Horowitz, Brad Myers, Mark Perlin, Steven Shafer

Real-time issues, synchronization (e.g., multi-media interfaces require the sound
be synchronized with the animation; how do you specify and implement this?) —
Roger Dannenberg, Dean Rubine

Intelligent Interfaces

— How can Al technology make user interfaces more helpful, easier to use, and eas-

ler to create?
Automatic creation of user interfaces — Brad Myers, Steve Roth

Demonstrational interfaces (when the user operates by direct manipulation on an
example object, but the system generalizes to a whole class of objects) — Brad
Myers

Adaptive interfaces (when the interface changes itself as it learns about the user)
— Tom Mitchell, Dean Pomerleau

Intelligent agents and intelligent help (the system proposes solutions to the user’s
problems) — Tom Mitchell

Computer-Supported Cooperative Work

— Much human activity involves collaborating with other people to accomplish

tasks. How can computers help with this?
Advanced forms of electronic mail — Jim Morris, Sara Kiesler (SDS)

Tools for collaborative writing — Jim Morris, Chris Neuwirth, Dave Kaufer
(English)

Impact of cooperative work technologies on groups — Jolene Galegher (English),
Sara Kiesler (SDS)

Integrating user models and systern models in groupware — Gregory Abowd

Social Organization and Work

— How does the introduction of a new computerized application affect the people

page 21
and organizations that use them?

» Impact of computers on organizations — Sara Kiesler (SDS)

» Trust in machine advice — F. Javier Lerch (GSIA)

Programming Languages as Human-Computer Interfaces
— How do humans create programs? How can programming languages and envi-
ronments enable more readable, effective, and efficient expression of program-
mers’ intentions?

+ How do humans generate and understand programs? What kinds of software struc-
tures will be easiest to understand? — Wilfred Hansen, F. Javier Lerch (GSIA),
Mark Perlin, Mary Shaw

+ What are the best ways to teach programming — Phil Miller, Mark Perlin, Steve
Shafer, Bruce Sherwood (EDRC)

Visual Programming (using graphics and other alternative representations of pro-
grams instead of text) — Brad Myers, Mark Perlin, Steve Shafer

+ Programming for end users (many people are programming for themselves using
spreadsheets. How can we bring this capability to other domains?) — Wilfred
Hansen, Brad Myers, Dean Rubine

 User interface aspects of Software Engineering — Gregory Abowd, David Garlan,
Mary Shaw

Application Areas
— Many important advances in user interfaces have resulted from studying the
interfaces for particular kinds of applications. Just a few are listed below. Sec-
tion 2 of this document contains other examples.

+ Computer aided design and computer aided manufacturing (CAD/CAM) — Rob-
ert Coyne, Tom Mitchell, Brad Myers, and most of the Engineering Design
Research Center

» Text editing — Brad Myers

» Process control, embedded systems (copiers, appliances, military systems, etc.) —
Roy Maxion, much of the SEI

+ The interface to the operating system (often called the desktop or visual shell, e.g.,
the Macintosh Finder) — Brac Myers

+ Medical systems — Dario Giuse, Takeo Kanade, Mark Perlin

» Robot control — Ikeuchi Katsushi, Dean Pomerleau, Steve Shafer, Chuck Thorpe

page 22
+ Computer-Aided-Instruction — John Anderson, Jill Larkin, Phil Miller, Mark Per-
lin, and most of the Center for Design of Educational Computing

« The user interfaces of Al programs, knowledge acquisition — Dario Giuse, Bon-
nie John, Roy Maxion, Mark Perlin, Steve Roth

« Computer music — Roger Dannenberg, Dean Rubine

«+ Visualization of data and programs (using graphics to make them more under-
standable) — Roy Maxion, Brad Myers, Mark Perlin, Steve Roth, Andy Witkin

page 23
5. Recommendations

In conclusion, the Human-Computer Interaction faculty make the following recommenda-
tions.

* An area in the Computer Science Department be recognized that focuses on
Human-Computer Interaction. This area, like other areas, will:

* Have regular meetings,
» Host an official seminar series, and
» Deal with recommendations for hiring and promotions.

» Courses in HCI, and HCI materials to be used in other CS courses, be developed
for undergraduates and graduate students, as outlined in Section 3 of this report.
These courses, and the infusion of HCI materials into other courses, should begin
as soon as practical and be phased in over several years.

+ The department, and the HCI area, promote collaboration so that all research in the
department can benefit, when appropriate, from taking the task/human/computer
perspective into account.

We believe that since HCI will increasingly be an important area for research and commer-
cial products, that this will improve the quality of the education, research, and status of the
School of Computer Science at Carnegie Mellon University.

page 24

6. References

Bobrow, Daniel G., Mittal, Sanjay, and Mark J. Stefik. “Expert systems: Perils and
promise.” Communications of the ACM 29.9 (1986): 880-894.

Markus, M. Lynne. “Power, politics and MIS implementation.” Communications of the
ACM 26.6 (1983): 430-444.

Myers, Brad A., and Rosson, Mary B. (1992). “Survey on user interface programming.” In
proceedings of CHI, 1992 (Monterey, California, May 3- May 7, 1992) ACM, New York,
(1992):195-202.

Teal, S. L. & Rudnicky, A. I. (1992). “A performance model of system delay and user
strategy selection.” In proceedings of CHI, 1992 (Monterey, California, May 3- May 7,
1992) ACM, New York (1992): 295-305.

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Carnegie Mellon Umiversity does not discominate and Carnegie Metlon University 1s required not
to discriminate in adrmissions and employment on the basis of race. color. national ongin. sex or
handicapinviolatton of Trle Vi af the Civil Rights Actof 1964, Title IX of the Educational Amendmenis
of 1972 and Section 504 of the Rehabilitation Actof 1973 or other federal. state. orlocallaws or executive
orders Inadditon. Carnegie Meilon University does not discriminate in admissior.; and employment
on the basis of religion, creed. ancestry. belef. age. veteran status or sexuat onentation in violation
of any federal. state. or iocal laws or executive orders inquines concerning application of this poticy
should be directed to the Provost. Carnegie Mellon University, 5000 Forbes Avenue. Pittsburgh. PA
15213 telephone (412) 268-6684 or the Vice President for Enroliment, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh. PA 15213, telephone (412) 268-2056

